skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shah, Akash"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Grading of bandgap by alloying CdTe with selenium to form a CdSexTe1–x/CdTe‐graded bilayer device has led to a device efficiency over 19%. A CdSexTe1–xabsorber would increase the short‐circuit current due to its lower bandgap but at the expense of open‐circuit voltage. It has been demonstrated that adding a CdTe layer at the back of such a CdSexTe1–xfilm reduces the voltage deficit caused by the lower bandgap of absorber from selenium alloying while maintaining the higher short‐circuit current. This leads to a photovoltaic device that draws advantage from both materials with an efficiency greater than either of them. Herein, a detailed account using device data, ultraviolet photoelectron spectroscopy, electron microscopy, and first‐principles density functional theory modeling is provided, which shows that CdTe acts as an electron reflector for CdSexTe1–x
    more » « less